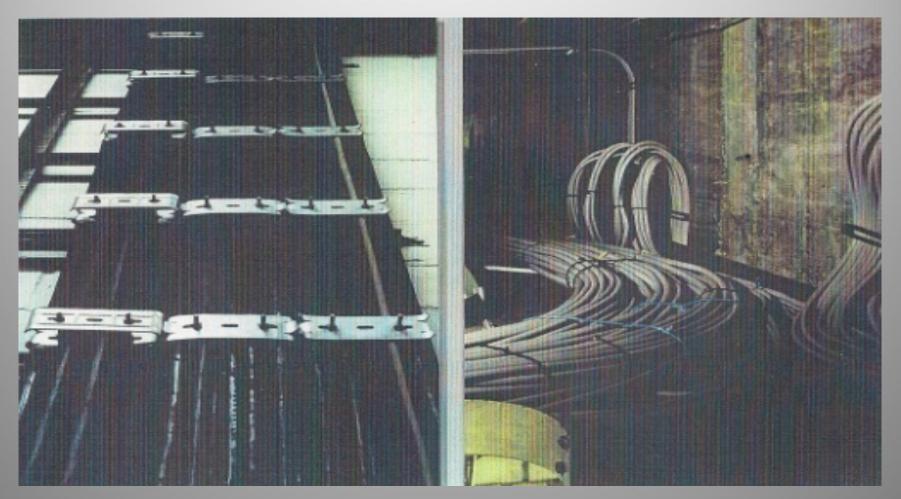
HFFR: An Introduction

Halogen-Free, Flame Retardant Compounds

ANDINA PLAST

FEB 2013


Selected topics: HFFR cables

- Cable installation
- Danger in case of fire
- Definition of HFFR
- > Over view about fillers and reaction in case of fire
- Material testing and Standards for HFFR cables
- Extruder equipment
- Processing parameters
- Cable construction bending test
- Crosslinkable HFFR

ANDINA PLAST

HFFR : Introduction

Cables are often installed as bunch in cable funnels In case of fire – Danger for fire expansion to next floor's

ANDINA PLAST

HFFR : Introduction

More than 80 % of Fire Death are caused by Smoke and Toxic gases, only 20 % got burned

ANDINA PLAST

Comparison: Jacketing material

PE medium and high density (PE-MD; PE-HD)

- Excellent environment stress cracking
- hard surface high mechanical strenth low abrasion
- good barrier properties
- excellent UV stability with carbon black
- environmentel friendly

PVC

- Good processibility
- Flexible cable laying
- Flame retardant; but in case of fire corrosive and toxic gases

HFFR-Compounds

- Halogenfree, flame retardant material
- Improvment of fire resistants with mineral filler like
- Aluminiumhydroxid Magnesium
- Calk, silicon

ANDINA PLAST

HFFR: Danger in case of cable fire

PCV Insulated cables and most fuoropolymers give up

- 1. High density of black smoke
- 2. Toxic and corrosive fumes like hydrochloric acid gas

Inhalation of smoke like carbon monoxide and carbon dioxide results in deaths of people within minutes

- Because of high smoke People can't find the way to go out
- Fire brigade can't see the flames
- Inhalation of toxic and corrosive emission gives irreversible damages of health
- Corrosive emission like hydrochloric acid is dangerous for all electrical / electronic and metalic equipment inside Buildings
- > High heat release of flame energy (unfilled polyolefins)

ANDINA PLAST

HFFR : Introduction

Two main flame retardant categories:

1. Halogenated polymers are flame retardant due to their chemical structure

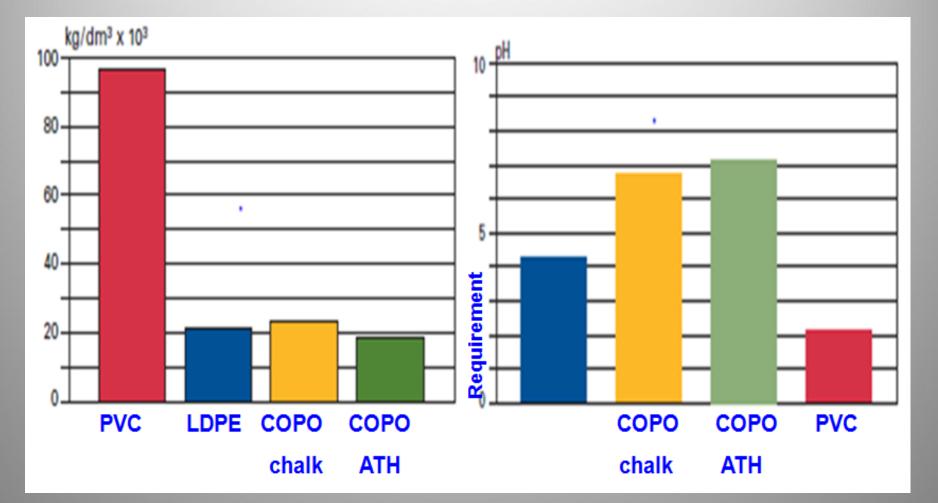
PVC compounds

- chlorparaffin
- brominated FR
- > Fluor thermoplast & elastomers

2. Halogen-free polymers needs additives to pass flame tests

Polyolefin / chalk / (silicon)

Polyolefin / metal hydroxide Al(OH)3 / Mg(OH)2 / Silicate


Silicon rubber

ANDINA PLAST

Material characteristics

Carbon monoxide formation

Acidity of combustion fumes

ANDINA PLAST

HFFR : Definition

HFFR = Halogen Free Flame (or Fire) Retardant (or Resistant)

other terms: LSOH = Low Smoke Zero Halogen FRNC = Flame (or Fire) Retardant Non-Corrosive

Zero Halogen means:

No Chlorine No Bromide No Fluorine No lodine

ANDINA PLAST

HFFR : Introduction

> High flame retardancy

- Low toxicity of smoke emission
- No halogen / no corrosive gases
- Low calorific load

HFFR cables are mainly used for

- Buildings, like hospitals, airports, schools, commercial centers
- Public transportation, like subway, railways, airplanes
- > Computer rooms, telephone centers
- > Industrial areas, like power plans

ANDINA PLAST

Selected topics: HFFR cables

Summary:

- Cable installation
- Danger in case of fire
- Definition of HFFR

Next:

Over view about fillers and reaction in case of fire

Material testing and Standards for HFFR cables

ANDINA PLAST

HFFR : Inorganic additives (Fillers)

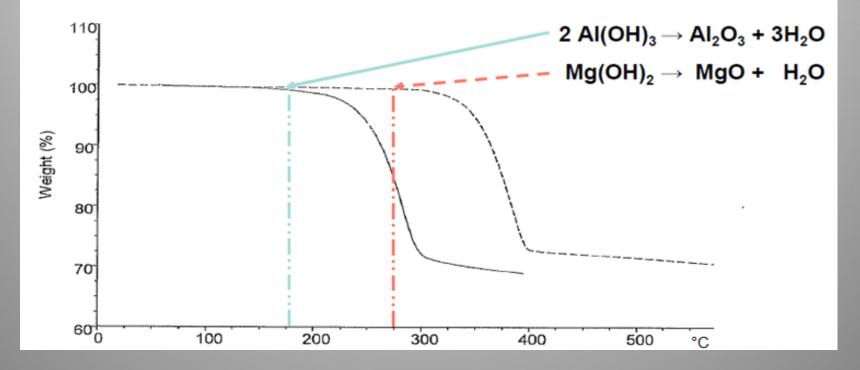
	Flame protection system	Advantage 🕐	Disadvantage
Flame retardant	Chalk / silicon	Low content of filler Low cost system Easy processing	Limited fire retardancy
	Aluminium Trihydrate (+ chalk)	Standard system High fire retardancy	High content of filler Special extruder design
Fire retardant	Magnesium hydroxide	High fire retardancy Simulate to ATH Higher melt temperature	High content of filler Higher cost compare to ATH
	Special additives Nanofiller Silicate	Additive to all systems Lower heat release Ash stability	Cost increase

Filler: Metal hydroxides are

- Halogen-free
- Environmentally friendly
- ➢ Non-toxic
- Not volatile
- Substantial reduction of smoke
- No corrosive or toxic decomposition products
- Reduction of subsequent damages

Filler: ALUMINIUM HYDROXIDE

On heating to 200°C, hydrated alumina decomposes into 66% alumina oxide and 34% water.


$2 \operatorname{AI}(OH)_3 \longrightarrow \operatorname{AI}_2O_3 + 3H_2O$

A cable contains about 70% by weight of Al(OH)₃ therefore a HFFR cables has about 25% of water, which is about the amount of polymer in the cable.

ANDINA PLAST

HFFR – Function of metal hydroxides

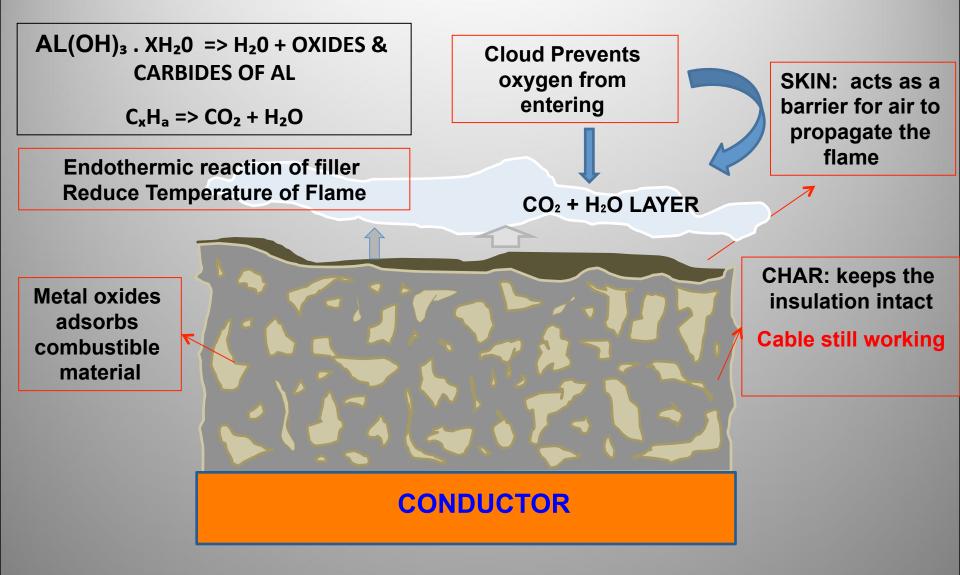
- Dilution of the Polymer
- Cooling due endothermic reaction of filler
- H2O vapour reduces Oxygen concentration and burnable gases
- Formation of barrier layer (ash)

ANDINA PLAST

Flame Retardancy during burning

a) **Endothermic** reaction \rightarrow total heat consumtion of

these reaction reduce the


temperature of the flame

 $2 \operatorname{Al}(OH)_3 + 1075 \operatorname{Jk/kg} \longrightarrow \operatorname{Al}_2O_3 + 3H_2O$ $\operatorname{Mg}(OH)_2 + 1316 \operatorname{kJ/kg} \longrightarrow \operatorname{MgO} + H_2O$

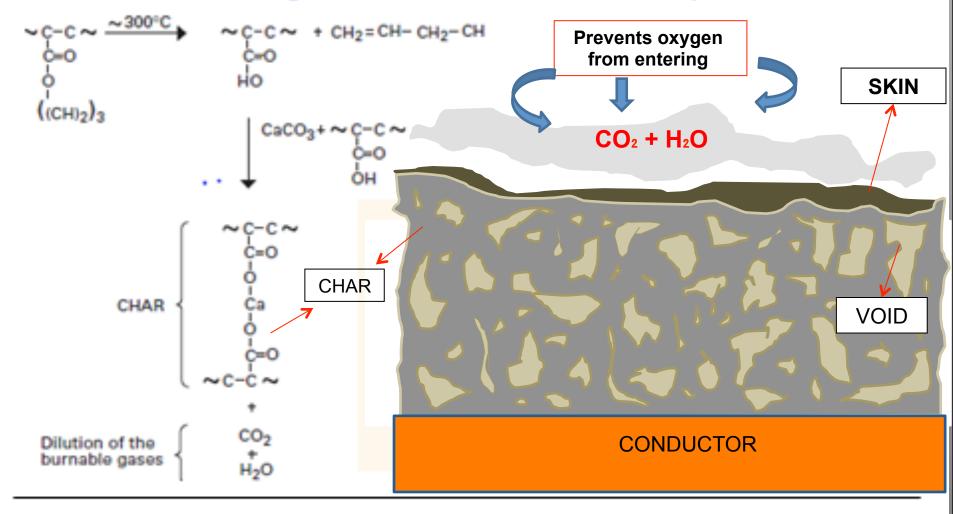
- b) The released water vapour <u>cools</u> the surface of the polymer and particularly <u>dilutes</u> the concentration of burnable gases in the surrounding area
- c) The remaining metal oxide residue has a high internal surface where sooty particles, EG polycyclic aromatic hydrocarbons, are <u>adsorbed</u> thus reducing the amount of flammable material
- d) The oxide residue becomes a skin which acts as a <u>material barrier</u>, disabling the further release of low molecular weight (easy to burn) decomposition products and acts as a <u>heat barrier</u> protecting the polymer against further decomposition
- e) Protective cloud of CO₂ and steam prevents air (oxygen) from reaching the fire
- f) Charred material keeps the insulation intact during the fire

ANDINA PLAST

MECHANISM FOR HEAT RETARDANCY

ANDINA PLAST

HFFR: COPO based - CHALK filled


LOW OXYGEN INDEX – CLOSE TO THAT OF STANDARD PVC - Compound (LOI = 26-30)

> LOW COST COMPOUND TO COMPETE WITH PVC

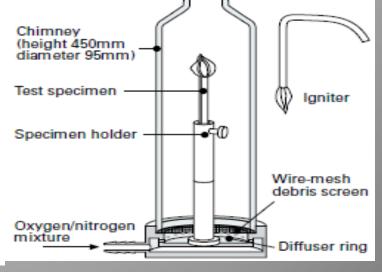
ANDINA PLAST

MECHANISM FOR CHALK RETARDANCY

Reaction during thermal treatment of COPO in present of chalk

ANDINA PLAST

Material test : Oxygen index (LOI)


Minimum Concentration of oxygen that will support combustion of polymer

Typical Results:	LOI %
LDPE / XLPE	18
PVC	26-33
COPO/SI/Chalk	26-33
COPO/AI(OH)3	30-40

Limited Oxygen Index LOI (ASTM 2863A) TOI (ASTM 2863D)

Plexchem Technologies

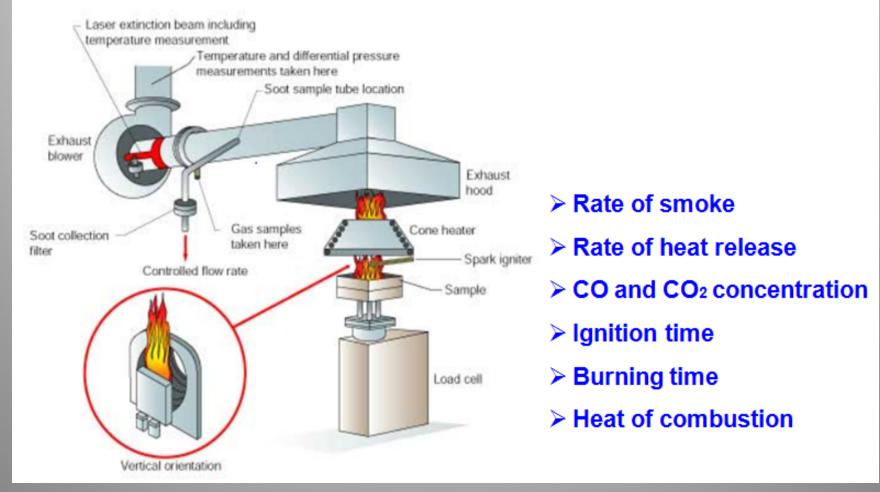
ANDINA PLAST

Material test: Corrosivity of gases

Standard IEC 60754

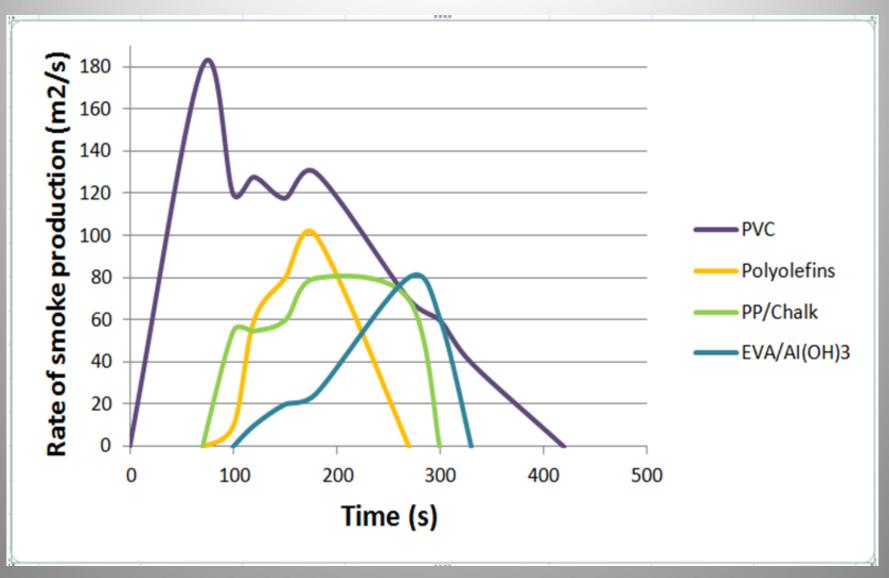
- Test conditions:
- -1 g of Material
- heat of 900 °C for 20 minutes

Requirements:

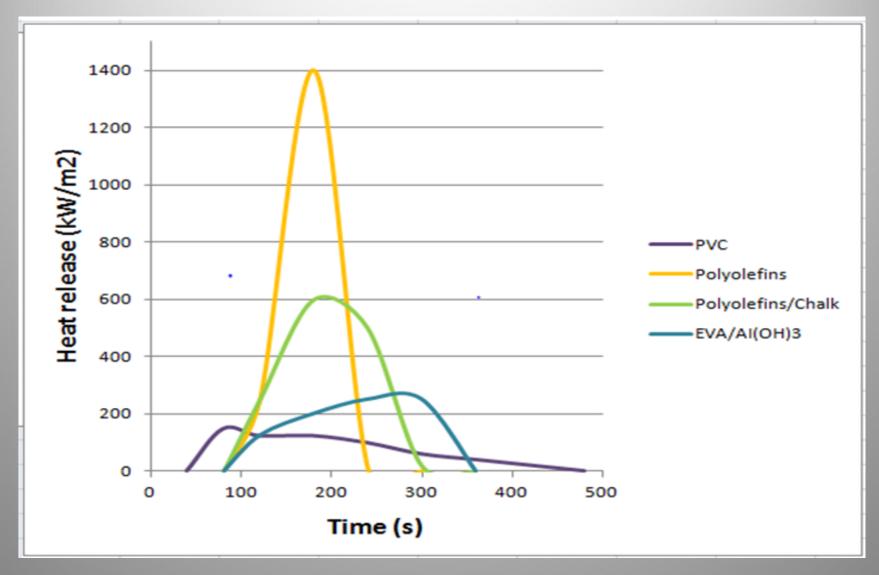

- Acidity of emitted gases pH > 4,3
- Conductivity < 10 yS

|PH > 4.3|

ANDINA PLAST


Material test: Cone Calorimeter, ISO5660

Principe of oxygen consumption calorimetry


ANDINA PLAST

Material test: Rate of Smoke

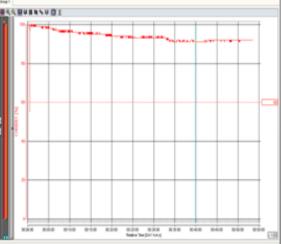
ANDINA PLAST

Material test: Rate of Heat release

ANDINA PLAST

Cable test: Measurement of smoke density

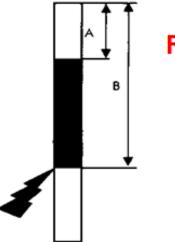
Standard IEC 61034


Test conditions:

- Cubic room 3x3x3 m, with glas window
- Source of light 2000 3000 lm
- Fire source 1000 cm³ alcohol
- Cable sample 1 m long
- Number of samples depends on diameter
- Optical measurement of light transmission

Requirement:

- Light transmission > 60%


Plexchem Technologies

ANDINA PLAST

Cable test: Flame test on single cable

Standard IEC 60332-1

- Test conditions:
- single cable
- lenght of cable: 600 mm
- Flame: blue core (1200 °C)
- Flame: yellow (part 2)
- Flame time: depents on diameter

Requirements:

- Fire self extinguishing
- Fire must stop between
- $A \ge 50 \text{ mm} \text{ and } B \le 540 \text{ mm}$

Diameter (mm)	Flame time (s)
D≤25	60
25 <d≤50< td=""><td>120</td></d≤50<>	120
50 <d≤75< td=""><td>240</td></d≤75<>	240
D>75	480

ANDINA PLAST

Cable test: Flame test on bunched cables

Standard IEC 60332-3

	Category A	Category B	Category C
Valume of non metallic material (I/m)	7	3,5	1,5
Flame time(min)	40	40	20

Test conditions and requirements:

- > Cable lengths 3,5 m
- > Damaged lengths over burner ≤ 2,5 m

Plexchem Technologies

ANDINA PLAST

Cable test : Flame test on bunched cables

ANDINA PLAST

Cable test: Calculation of burnable material

> Calculation of non metalic Elements for 1m of Cable

Length of sample cm: 30,0

Cable diameter mm: 33

Material		Weigh of material	Desity	Volume
		(g)	(g/ml)	(l/m)
Jacketing	HFFR	116,5	1,50	0,259
Bedding		-	-	-
Tape	HFFR tape	14,3	1	0,048
Tape	Paper	4,5	1	0,015
Insulation	XLPE	109,9	0,92	0,397
Volume for 1 m of Cable			0,717	

Calculaton of Number of cable samples

Length of sample / latter 3,5 m

	Standard according IEC 60332-3, bunched cable		
Burnable material (l/m)	Category A	Category B	Category C
Number of sample			2
Number of laying			1
Used Cable (m)			7

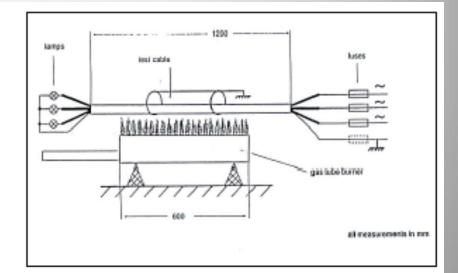
ANDINA PLAST

Definition of flame retardant / fire resistance

What is the difference between Flame retardant and Fire resistance of cables ?

1. Flame retardant cables resist the spread of fire into a new area

2. Fire resistance cables must provide circuit integrity under specified conditions over 3 hours at 700 °C according the standard IEC 60331


ANDINA PLAST

HFFR : Fire resistance test IEC 60331

Test conditions

- fire in undefined space
- single cable
- defined gas/air mixture
- flame temperature (min 750°C)
- inflammation 180 min
- test voltage is the nominal voltage of the cable

Requirements

- no reaction of the
 - corresponding fuses
- no interruption of the conductor

Comparable tests - NBN C 30-004

Plexchem Technologies

ANDINA PLAST

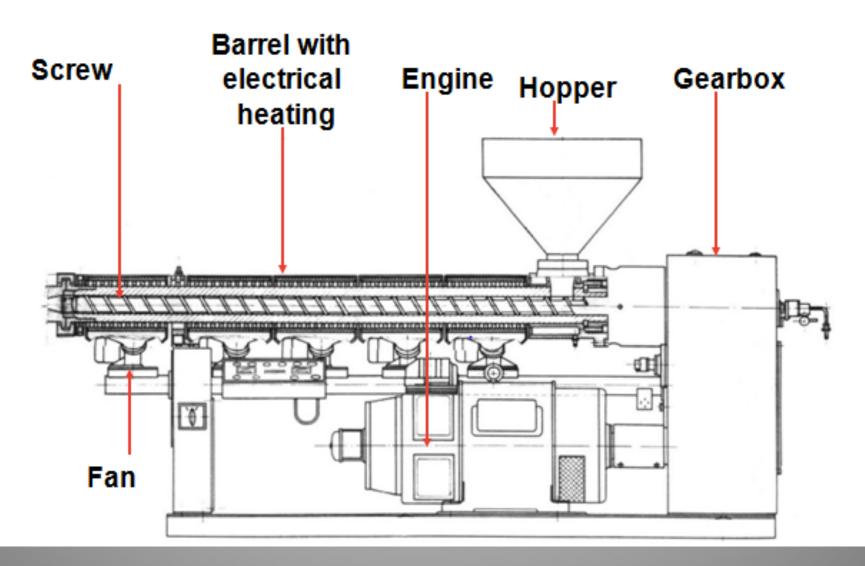
Over view about Standards for HFFR material and cables

Reaction to fire		
flame retardant	IEC 60332-1, EN 50265	flame test on single cable
	IEC 60332-2, EN 50265	flame test on single cable
fire retardant	IEC 60332-3, EN 50266	fire on bunched cables
Resistance to fi		
Resistance to ti	re	
fire resistant	IEC 60331, EN 50200 BS 6387	test to operational maintenance for certain period of time
Smoke density	EN 50268, IEC 61034	cube test, 27m ³ chamber
Corrosivity	EN 50267	determination of halogens,
	IEC 60754	acidity and conductivity
Toxicity	NES 713	determination of content of
	EN 50305	several specific gases

ANDINA PLAST

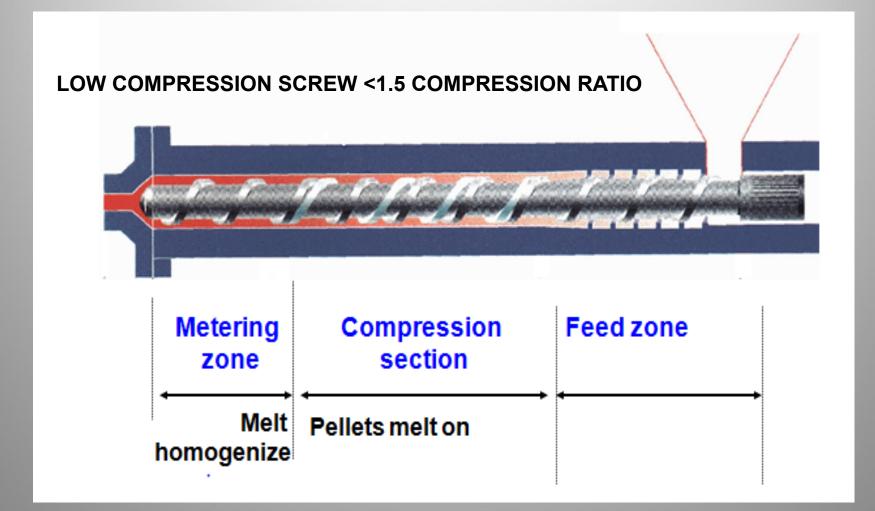
HFFR - Selected topics for HFFR cables

Summary:


- Cable installation
- Danger in case of fire
- Definition of HFFR
- Over view about fillers and reaction in case of fire
- Material testing and Standards for HFFR cables

Next:

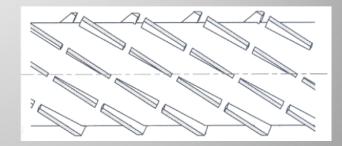
- Extruder equipment
- Processing parameters
- Cable construction bending test
- Crosslinkable HFFR


ANDINA PLAST

Units of extruder

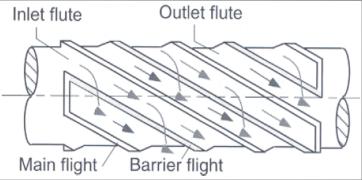
ANDINA PLAST

Screw design

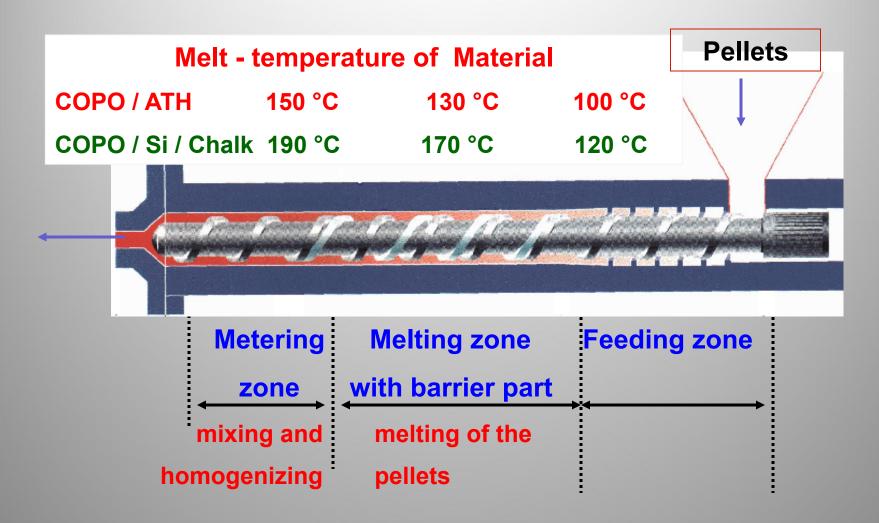


ANDINA PLAST

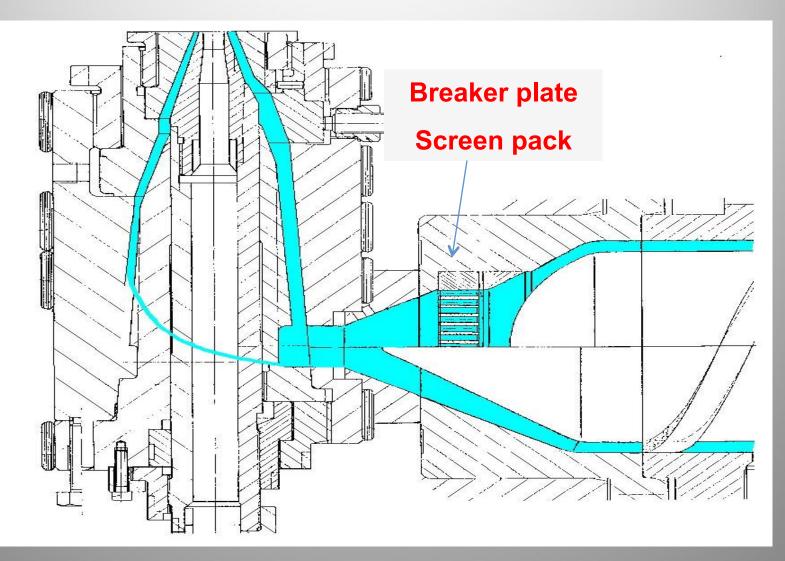
Screw design: mixing parts


Improvement of melt homogenity for higher output

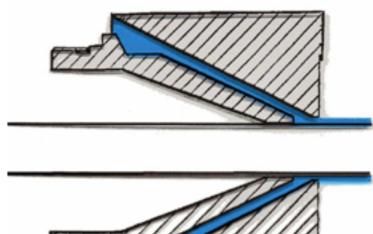
Melt dispersion

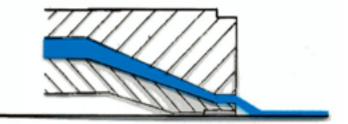


Plexchem Technologies


ANDINA PLAST

HFFR : Processing parameters


ANDINA PLAST


HFFR : Screw tip / screening

ANDINA PLAST

HFFR : Tool design

Pressure design

Tube design

ANDINA PLAST

HFFR : Tube tools

Tube tool

Head vacuum

Define, short Tube length

Plexchem Technologies

ANDINA PLAST

Summery : Extrusion parameters

Polymer mix / Silicone / Chalk filler system:

- > PE / PVC extruder with standard equipment
- Temperature profile 160 180 °C

Polymer mix / ATH filler system:

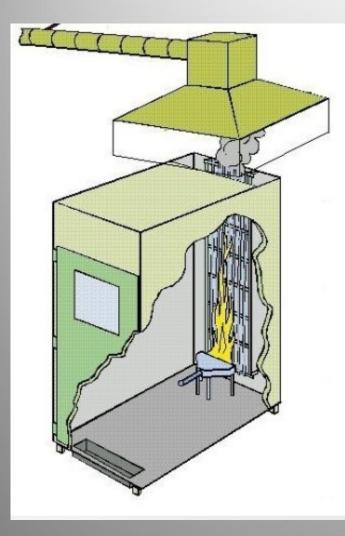
- Low compression screw and controlled melt temperature
- Screw tempering 70 80 °C
- Deep flow channel inside crosshead to reduce back pressure
- Temperature profile 130 160 °C
- Pressure / semi tubing to avoid shrinkage problems
- Quick water cooling to avoid bubbles

HFFR: Stress cracking test

Cracktest for HFFR-Material

The sample preparation for the Cracktest is simular to VDE 0472 Teil 810 Verfahren 1 or IEC 811-4-1 (1985) environmental stress cracking.

At first we mix the HFFR-Granulate on a roll at 140°C. The homogenous material as it comes from the rolls has a wall thickness about 4-5 mm. From this we press plates 200x200x3,3 mm at 150°C.


Now we cut the plate in test pieces 38x13 mm.

Each sample will be cut by a blade (IEC 811-4-1 page 11). After this we take 5 samples in a special holder (figure 5).

We put the holder with the samples in an oven by 70°C or 80°C and look after different times for cracks.

Cracks

Cable test: New European Standard

Gas Analysis Instrumentation

These are housed in a 19" instrument rack containing: -

- Oxygen Analyser (paramagnetic) supplied with temperature and pressure compensation for primary heat release measurement.
- Carbon Dioxide Analyser (infrared) for use in heat release measurement.
- Dual stage soot filter, refrigerant cold trap, drying column, pump and waste regulators for conditioning the sample gases prior to analysis.
- Controls for the smoke measurement system (if purchased).

HFFR: Crosslinking

- Improved temperature resistance
- Improved drip resistance when burning
- Improve creep resistance (deformation under load)
- Improved chemical resistance (stress cracking)
- Improved impact resistance
- Increase abrasion resistance

Eg T3 cables for automotive applications in severe chemical environment (oil, lubricants, battery acids and heat)