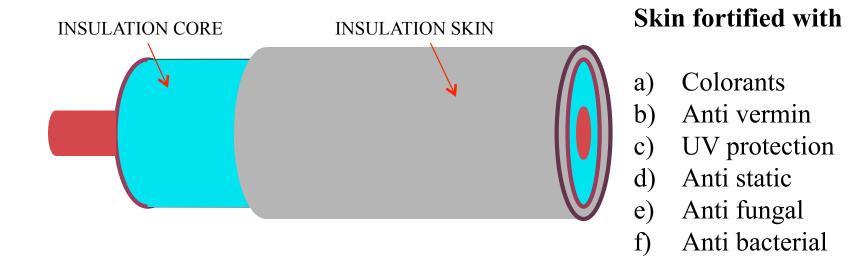
THE ADVANTAGES OF FORTIFIED SKIN

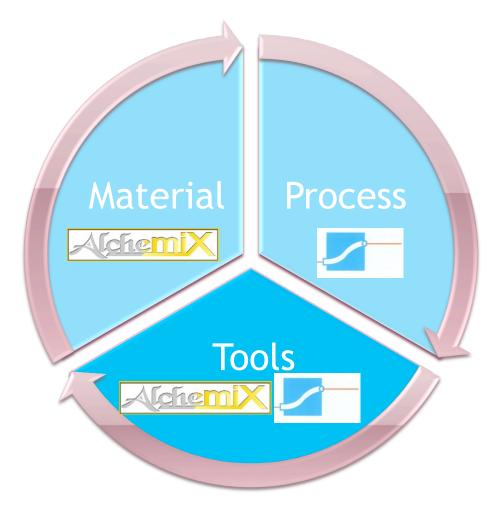
Application on the insulation and sheath of the Cables



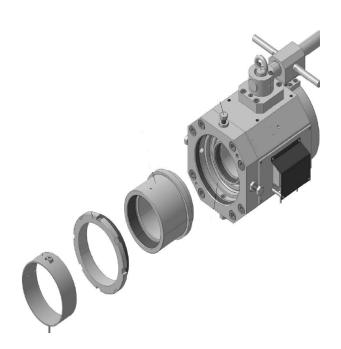
Prepared by : Mohammad Mohseni (KCI) Maurice Alphonso (Alchemix)

Cables 2015 Conference Kolon, 3-5 March 2015

INTRODUCTION


* Two different extruders are used in skin extrusion; one to produce the insulation core and the other the skin surface layer

* Besides colorants, other additives can be added to this skin layer to enhance the overall properties of the cable


* The overall thickness of the cable remains the same

TECHNOLOGY SECTORS

EXTRUSION TOOLS

Essential tools and machinery for Skin application

Co-Extruders

Vertical

Horizontal

Cross head for double layer extrusion

CROSS-HEAD TOOLS AND ACCESSORIES

For precise application of Skin, we need precise tooling :

Die and Nipple

Cartridges (main distributer) and Collet (front distributer) for PE/PVC/XLPE/HFFR/PA

All cost savings are highly dependent to precise tooling

REASONS

Reduction in the use of expensive colour or additive masterbatches:

Because expensive materials are added only to the skin layer and not the whole insulation

Reduction in down time for cleaning:

cleaning the main extruder which runs only a homogenous product is easier vs cleaning the smaller skin extruder which runs a variety of masterbatches.

Reducing waste generated in purging:

A large amount of extrudate in the main extruder is purged vs the smaller amount of extrudate generated from the smaller skin extruder. This is especially true for colour changes.

Keeping the insulation clean:

it is ironical that stringent steps are taken to maintain cleanliness before and during extrusion, then "contaminants" are added to the insulation

Customization:

The core and the skin, for compatibility reasons, should be made of the same class of polymeric material, however different grades, one type for the core and another for the skin, to improve the overall performance of the cable.

SCOPE OF STUDY

The scope is categorized into 2 topics :

COLORED INSULATION SKIN OF LV CABLES

LV CABLE'S INSULATION

6 month record Cable Factory Production (actual case study from Feb 2014 to July 2014)

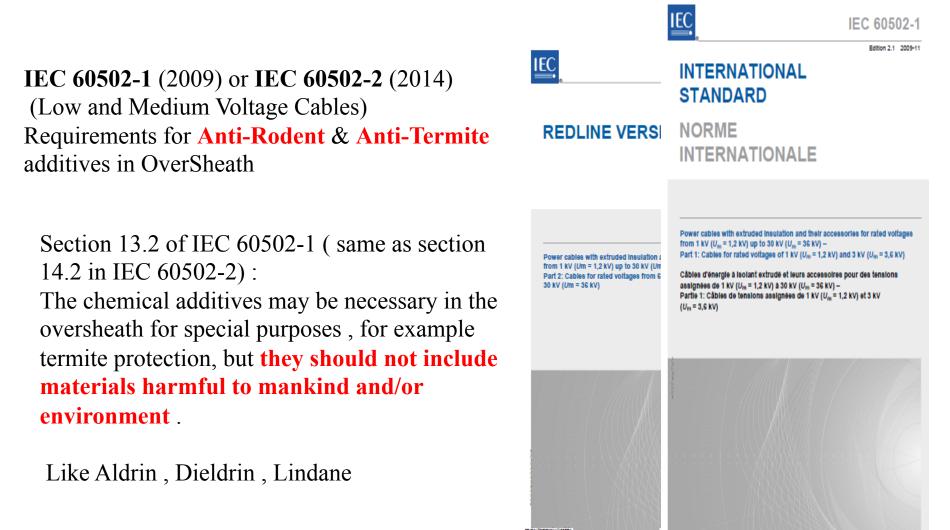
2

3

4

Conductor	Insulation Total	(According t) Cable Re		Master- batch
Xsection Area	Thickness	Production over half a year (meter)		saving on Skin
mm2	(IEC 60502-1)	meter	No.s	kg/kM
16	0.7	447,767	135	0.19
25	0.9	231,593	118	0.22
35	0.9	160,583	100	0.24
50	1.0	146,151	145	0.32
70	1.1	100,940	110	0.43
95	1.1	71,391	84	0.49
120	1.2	99,937	81	0.62
150	1.4	61,742	50	0.83
185	1.6	55,115	38	1.08
240	1.7	62,162	49	1.32
300	1.8	89,968	46	1.56
400	2.0	3,797	4	1.97
500	2.2	400	1	2.48

The major Savings are concentrated on :


- Reduction of used color masterbatch
- **Reduction** of waste material due to color exchange
- **Reduction** of electricity consumption on color change
- **Reduction** of over consumption by using more precise extrusion tooling

COST SAVING ON COLORED INSULATION

Details of Saved Material and Energy

Conducto r section Area		Insulation Total Weight (Core+Skin)		Sub total of Master batch	x2 For 3 Cores different colors waist	x2 For 3 Cores different colors waist	1	 Saved master batch 1,400 Kg/ year saving 6,300 USD/year
mm2	kg/kM	kg/kM	mm	KG	kG	KWH		
16	3.6	16.1	6.5	84	675	3,375		 Saved XLPE due to color change in smaller extruder about 10 tone/
25	4.6	19.3	8.22	51	590	2,950		year, making 24,000 USD/year
35	4.9	20.8	8.8	38	500	2,500		Joan , manning _ 1,000 002 / Joan
50	5.7	26.9	10.2	46	725	3,625	\searrow	
70	6.8	35.4	12.1	43	550	2,750		Saved electrical energy in quicker way
95	7.8	40.5	13.7	35	420	2,100	R	and in smaller extruder 22,000 KWH/ year , making 4,300 USD/year
120	8.8	49.8	15.4	61	405	2,025		year, making 1,500 0507 year
150	9.9	65.0	17.3	51	250	1,250	\backslash	Net using outre meterial by thisker
185	11.0	82.7	19.3	59	190	950		 Not using extra material by thicker insulation in using more precise tooling
240	12.6	100.3	21.9	82	245	1,225		(hidden and not included in this
300	13.9	117.8	24.2	140	230	1,150		calculation)
400	15.7	147.3	27.2	7	20	100		
500	17.7	183.2	30.7	1	5	25		

INTERNATIONAL STANDARDS

and a farmeric longer

SUITABLE ADDITIVES COMPLY STANDARD

Anti-Rodent, Anti-Termite Masterbatch:

- * Non-toxic ingredients (Environmentally friendly, heavy metal free)
- * Product based on EVA as carrier (to be used both for PVC , PE , HFFR , $\ldots)\,$ compounds

AEGIS AR B-3251 Anti-Rodent

AEGIS AT P-3151 Anti-Termite

* It causes an extremely unpleasant sensation when rodents tried to bite the finished products. Such intense and unpleasant sensation deters rodents from further attempts to attacks.

APPLICATION OF ANTI-RODENT IN SKIN

A list of Different cable size (from 10 mm to 100 mm)

Row	Cable Name	Cable Size	Jacket Thickness (mm)	Overall Diamet er (mm)	Jacket Weight (gr/m)	Skin Thickness (mm)	Skin Weight (gr/m)	Ratio of Skin to Jacket (%)
1	N2XY	1x4 rm	1.4	6.8	34.7	0.4	11.7	34%
2	N2XY-O	2x1.5 rm	1.8	10.8	74.3	0.4	19.1	26%
3	N2XY-O	2x6 rm	1.8	14.2	102.4	0.4	25.3	25%
4	N2XY-O	2x16 rm	1.8	18.6	138.7	0.4	33.4	24%
5	N2XY-O	2x70 sm	1.8	23.7	180.8	0.4	42.7	24%
6	N2XY-O	2x120 sm	2.1	30.7	275.5	0.4	55.6	20%
7	N2XY-O	2x185 sm	2.3	36.7	362.9	0.4	66.6	18 %
8	N2XY-O	2x240 sm	2.5	41.4	446.0	0.5	93.8	21%
9	N2XY-O	2x400 sm	2.9	52.3	657.1	0.5	118.7	18 %
10	N2XSEYKYRY-O	3x25/16 8.7/15KV	2.8	61.1	748.7	0.5	138.9	19 %
11	N2XSEYKYRY-O	3x50/16 8.7/15KV	3.0	67.2	883.4	0.5	152.9	17%
12	N2XSEYKYRY-O	3x70/16 8.7/15KV	3.2	73.4	1030.3	0.5	167.1	16%
13	N2XSEYKYRY-O	3x120/16 8.7/15KV	3.5	81.2	1247.3	0.6	221.7	18 %
14	N2XSEYKYRY-O	3x185/25 8.7/15KV	3.8	90.6	1512.8	0.7	288.5	19 %
15	N2XSEYKYRY-O	3x240/25 12/20KV	4.1	102.9	1857.9	0.8	374.5	20%

* We have considered jacket thickness from 1.4 to 4.1 mm

```
* Skin (having Anti-Rodent M.B) having thickness of 0.4 to 0.8 mm.
```

* Weight of Skin , is about 20% of whole sheath

SAVINGS OF ANTI-RODENT ORDINARY PROTECTION

Fortified Anti-Rodent SKIN Calculation and Savings using 3% M.B in Skin

Row	Cable Name	Cable Size	Anti Rodent Weight in Whole sheath (gr/m)	t Weigh t in Skin	Saving of Anti Rodent Master batch
1	N2XY	1x4 rm	1.0	0.4	195 %
2	N2XY-O	2x1.5 rm	2.2	0.6	290 %
3	N2XY-O	2x6 rm	3.1	0.8	305%
4	N2XY-O	2x16 rm	4.2	1.0	316%
5	N2XY-O	2x70 sm	5.4	1.3	323%
6	N2XY-O	2x120 sm	8.3	1.7	396 %
7	N2XY-O	2x185 sm	10.9	2.0	445%
8	N2XY-O	2x240 sm	13.4	2.8	376%
9	N2XY-O	2x400 sm	19.7	3.6	453%
10	N2XSEYKYRY-O	3x25/16 8.7/15KV	22.5	4.2	439 %
11	N2XSEYKYRY-O	3x50/16 8.7/15KV	26.5	4.6	478%
12	N2XSEYKYRY-O	3x70/16 8.7/15KV	30.9	5.0	517%
13	N2XSEYKYRY-O	3x120/16 8.7/15KV	37.4	6.7	463%
14	N2XSEYKYRY-O	3x185/25 8.7/15KV	45.4	8.7	424%
15	N2XSEYKYRY-O	3x240/25 12/20KV	55.7	11.2	396 %

- Normally it's recommended to use 3 % Anti-Rodent M.B in the outer Sheath
- By application of Anti-Rodent M.B. limited to Skin , we can save in average 400%

meaning 1/5 of Whole Jacket having M.B.

SAVING OF ANTI-RODENT EXTRA-ORDINARY PROTECTION

Fortified Anti-Rodent SKIN Calculation and Savings using 7% M.B

Row	Cable Name	Cable Size	in Whole	Anti Rodent Weight in Skin (gr/m)	Saving of Anti Rodent Master batch
1	N2XY	1x4 rm	1.0	0.8	27 %
2	N2XY-O	2x1.5 rm	2.2	1.3	67 %
3	N2XY-O	2x6 rm	3.1	1.8	73 %
4	N2XY-O	2x16 rm	4.2	2.3	78 %
5	N2XY-O	2x70 sm	5.4	3.0	81 %
6	N2XY-O	2x120 sm	8.3	3.9	112%
7	N2XY-O	2x185 sm	10.9	4.7	134%
8	N2XY-O	2x240 sm	13.4	6.6	104%
9	N2XY-O	2x400 sm	19.7	8.3	137%
10	N2XSEYKYRY-O	3x25/16 8.7/15KV	22.5	9.7	131%
11	N2XSEYKYRY-O	3x50/16 8.7/15KV	26.5	10.7	148 %
12	N2XSEYKYRY-O	3x70/16 8.7/15KV	30.9	11.7	164 %
13	N2XSEYKYRY-O	3x120/16 8.7/15KV	37.4	15.5	141%
14	N2XSEYKYRY-O	3x185/25 8.7/15KV	45.4	20.2	125%
15	N2XSEYKYRY-O	3x240/25 12/20KV	55.7	26.2	113%

- For some extra-ordinary application and usage of Anti-Rodent outer sheath We have considered 7% M.B
- In this case we have made stronger outer sheath of cables against Rodent attack at least 2 times more than normal.
- And we have saved in average 110 % of Anti-Rodent meaning , we used

1/2 M.B comparing to whole sheath .

VERIFICATION ACCORDING TO IEC 60502

All sheath are tested according to IEC 60502-1 & 2 grade ST2

Test Item	Sheath Type	Standard Requirement	Test Result
Toncilo Strongth	Anti Termite		16.8 N/mm ²
Tensile Strength before aging	Anti Rodent	MIN 12.5N/mm2	17.5 N/mm ²
	Normal		13.3 N/mm ²
Tensile Strength	Anti Termite		16.9 N/mm ²
aged	Anti Rodent Normal	MIN 12.5N/mm2	17.7 N/mm ² 13.7 N/mm ²
	Anti Termite		0.60%
Variation	Anti Rodent	MAX 25%	1.10%
	Normal		3.00%
Elongation at	Anti Termite		275%
Elongation at eak before aging	Anti Rodent	MIN 150 %	221%
	Normal		255%
Elongation at	Anti Termite		251%
break of aged	Anti Rodent	MIN 150 %	266%
3	Normal		230%
	Anti Termite		- 9 %
Variation	Anti Rodent	MAX 25%	20%
	Normal		-10%

* Conclusion : No mechanical/thermal properties is compromised with high dosage of additives

ANTI-RODENT/TERMITE – TEST SAMPLES

We have tested 3 identical cables NYY-O 3x2.5 mm2 rm

Sample A : having ordinary jacket

Sample B : having 7% anti-rodent in skin

Sample C : having 7% anti-termite in skin

* We have selected **non-armoured** and **small cable** for test in order to show ultimate reliability of used method (in bigger cables and other cable design having metallic layers the damage of termite/rodent attack will be considerably less !!!

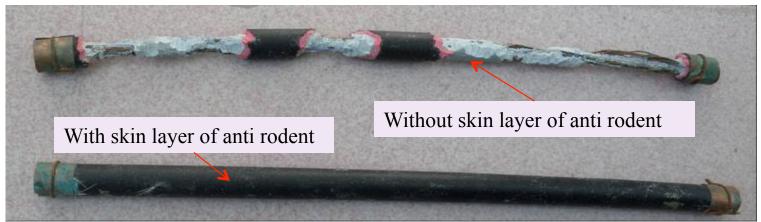
* Test method is adapted by Chinese test laboratories . For evaluation of test results , comparisons of number of bites and depth of damage on cable's non-metallic parts is considered .

TEST METHOD

The test was based on the JB/T 10696.10.2011

Test method for determining mechanical, physical and chemical properties of cables and wires

Part 10 : Rat gnawing test.

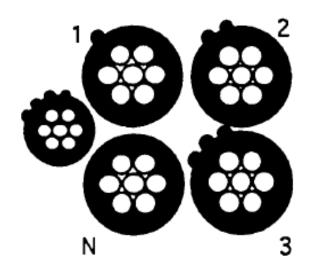

Protective class	Protective rate	Description of Wires and Cables gnawing status
Significant		No teeth trace gnawed by rats on the surface or slight teeth trace
Better (Medium)	>= 0.7	Heavy teeth trace (the gnawed depth is less than half of the sheath thickness, the coat layer is not perforated)
General	>= 0.5	Heavy teeth trace (the gnawed depth is more than half of the sheath thickness, the outer jacket is not perforated)
		Perforation in the surface of outer jacket of cables
Failure	<0.5	
	HICA	The rats were died because of poisonous repellent in cable outer sheath.

RODENT ATTACK

Before test

After test

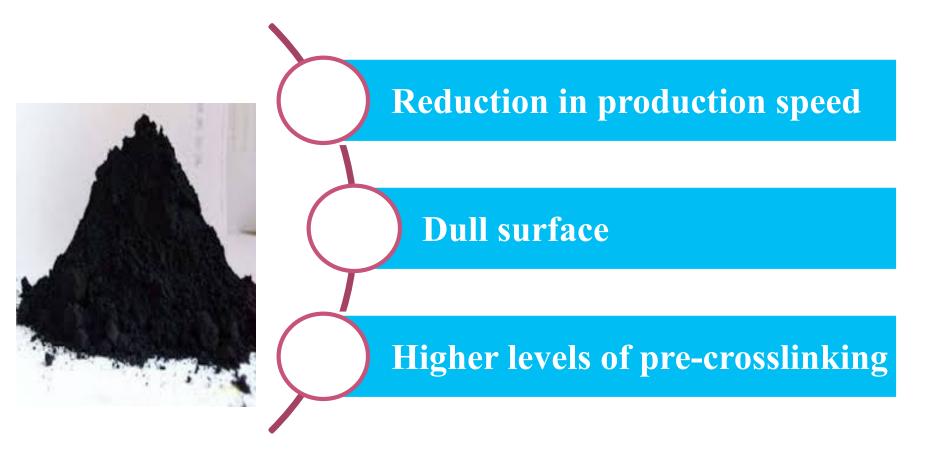
TEST RESULTS


Test Lab :			File number: GDEI-2014128]		Test re Guangdong Entor		nstitute		
Guangdong					Name of products	Anti-rodent Cable	File number	G	GDEI-20	14128
Entomological Institute (Guangzhou , China)		Test Report			Type of products	Cable	Raw materials of products			
					Test category	Entrust inspection	State of products	В	lack, Φ	=50mm
					Consignor	Plexchem Technologies	Address	01-39	PENJ	PLACE, BLK 8 # JRU TECH DRE 608780
In sample Having foutified		Anti-Rodent Cable			Production unit of raw materials	ST2- ART	Date of report	19	th Jan 2	015
In sample Having fortified	Name of products:	And Rodent Cable			Sampling	Submitted sample	Zip code	608780	Tel	(65)62640288
Skin of Anti-Rodent :	Type of products:	Cable			method					
	Consignor:	Plexchem Technologi	es	1	Test methods	The test was based on the J mechanical, physical and o wires—Part 10: Rat gnawing to	chemical prop			
Small teeth trace gnawed by rat on the surface .	Tast astagonu	Entrust inspection		**	Date of test	Dec.19th 20	014 to Jan.21st	2015		
Tat on the surface .	Test category:	JB/T10969.10.2011			Test results	Small teeth trace gnawer protective rate \geq 0.9. The test s For the diameter of the t	amples have s	ignificant e	effect or	anti-rodent.
The protective rate $\geq =0.9$.						requirements of the standard,				
The protective rate >-0.9 .					Note	 The entrust inspection is re To assure the accuracy of 30mm in diameter. 	the test, the te	est sample	s shou	d be less than
The resistance quality is						3). Examine and visually rate u Zhong Jun-hone Professor	Li Qiu-jia Vice-Profess	n	system	Liu Bing-rong Engineer
graded as Significant.					Approve	Signature:	Signature:	ch	ain eck	Signature:
	Guang	dong Entomological Institute				thing Juntanies	Li Qin-i	ian	2	in Big-Hong

ADVANTAGES OF SKINING FOR ABC CABLES

BLACK SKIN OF ABC CABLES INSULATION

OUTSTANDING POINTS IN ABC OVERHEAD CABLES:


• Ultra Violet radiation from direct sunshine

is the major cause in deteriorating of ABC cross-linked cables, with respect to poor dispersion and improper particle size and insufficient amount of carbon black.

• SOLUTION:

addition of higher levels of carbon black especially in areas where year round sunshine is prevalent

PROBLEMS ASSOCIATED IN ADDING MORE CARBON BLACK

THE PURPOSE OF THE STUDY

• We studied the results obtained by applying the same amount of the related masterbatch to the whole insulation vs only to the insulation skin layer was compared .

We will also report our investigation on the effects of the electrical properties obtained when 2.5 % of carbon black was added to the whole insulation as compared to the electrical properties of the cable when the same level of masterbatch is confined only to the skin layer.

IMPORTANT NOTE !

- * The base materials for the core and the skin are made using a PE polymer each having different melt flow Indexes and density
- Because they are both **PE** based the cable is fully bonded to each other and the skin and core cannot be physically separated
- * The core consist of a PE polymer that would impart excellent mechanical and chemical propertiesThe skin is made of a fast flowing PE polymer

HD 626 – INSULATION TYPE TIX-5

Superior Mechanical/Thermal characteristics meeting HD626 as the best choice for insulation

	HD 626	Normal XLPE	
Tensile Strength (before aging) N/mm2	14.5	12.5	 This grade covers all other Standards : •ASTM D.1248 , Type III , category 4 •NFC 33209 (and so called Facade cables) •AS 3560 , 3675
Aging Condition (temperature / time)	150 'C 240 h	135 'C 168 h	•ANSI/ICEA S 66-524, S 70-547 •HD 603 S1, HD 626 (TIX 1,3,5,7,8) •NP 3528 •SFS 5701 •SS 424 14 63 and UNE 210302R
Hot set test , Mechanical load	0.3 Mpa	0.2 Mpa	

SILOXANE XLPE PRODUCTION LINE

Silane XLPE absorption Line

SILOXANE XLPE COMPOUNDS

Alchemix XLPE-130K (Natural) as Core

* Mechanical

- * Thermal
- * Dielectric Strength
- * Faster curing

Alchemix XLPE-135K (Black) as Skin

- * Better processing in
- extrusion
- * Smooth and Shiny surface
- * Weather and environmental

resistance

A CORE WITH EXCELLENT MECHANICAL PROPERTIES

THE ABC CABLES ARE SUBJECTED TO HIGH STRESS DUE TO:

- EXPOSURE TO TEMPERATURE EXTREMES ESPECIALLY IN DESERT CONDITIONS
- EXPOSURE TO MOVEMENTS DUE TO WINDY CONDITIONS
- DIFFERENCE IN THERMAL EXPANSION OF PLASTIC INSULATION & ALUMINIUM CONDUCTOR

MECHANICAL / THERMAL TESTS

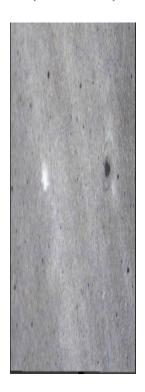
Comparisons of test results by referencing TIX-5

	Black Skin / Natural Core	Whole Black			Black Skin / Natural	Whole Black
Tensile Strength (before aging) N/ mm2	20.1	17.9			Core	
Tensile Strength (after aging) N/mm2	17.6	15	The resulting cable has a superior surface finish with excellent	Hot set test - Elongation Under Load	85%	95%
Tensile Strength Variation (after aging)	12%	16%	thermal and mechanical properties that can be			
Elongation at Break (before aging) %	592	440	processed at extremely high productions speeds.	Hot set test - Permanent Elongation	3.5 %	7.5 %
Elongation at Break(after aging) %	508	370			4 50/	2.0%
Elongation at Break Variation (after aging)	14%	17%		Shrinkage test	1.5%	2.0%

BLACK SKIN CALCULATION FOR ABC CABLE

Insulated Conductors and Dimensions according to HD 626 S1:1996/A2:2002 Part1,2, 6-E

Section mm2	Conductor Diameter (mm)	XLPE Insulation thickness (mm)	Total XLPE Weight (gr/m)	Carbon black (gr/m)	Skin Weight t=0.2 mm (gr/ m)	Required M.B in Skin
16	4.8	1.2	21.0	0.17	4.1	10%
25	5.8	1.4	29.4	0.24	4.9	12%
35	7.0	1.6	40.2	0.32	5.8	14%
50	8.2	1.6	45.8	0.37	6.5	14%
70	9.9	1.8	61.5	0.49	7.8	16%
95	11.5	1.8	69.9	0.56	8.7	16%
120	13.0	1.8	77.8	0.62	9.6	16%


- Following assumptions are made :
- 1- Insulation thickness acc HD 626-1
- 2- Skin thickness = 0.2 mm
- 3- Carbon black content of M.B ; 40%
- 4- Minimum required C.B ; 2 %

• Conclusion :

We need on average 16% of Black M.B in skin, to cover standard requirements . So, we take 20% in our tests .

HIGHER CONCENTRATION OF BLACK M.B.

Dispersion and Concentration of5% M.Bvs.20% M.B(2% C.B)(8% C.B)

* IEC 60811-607 (2012)
Tests for the assessment of carbon black dispersion
* ISO 18553 (2002)
Figures of Grade of dispersion assessment

- Normally Carbone black particle size is requested to be **lower than 20 nm** (for having better dispersion)
- By having higher concentration of carbon black in average ; we will achieve :
- 1- Higher protection against UV, by more C.B we applied 4 times more C.B.
- 2- Lower risk of damage against UV with bigger C.B particle size (and poor dispersion)

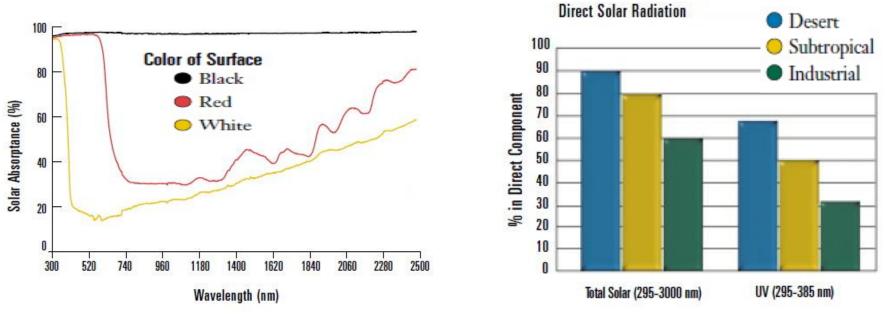
ADVANTAGE OF SKIN IN SURFACE

1-Although we have used 20% black M.B in skin (comparing to normal whole black insulation that has 5% black M.B) ; Skin surface is more

SMOOTH and SHINY

2-Following above matter , we experienced

Easier process and Higher Speed of Extrusion

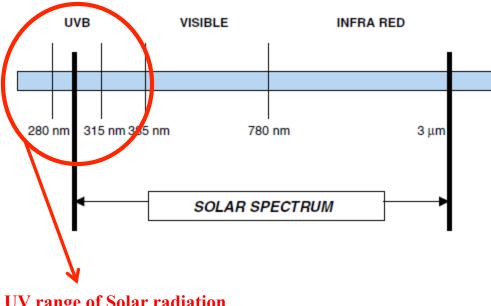

3- Smoother surface practically leads to

HIGHER Abrasion resistance

WEATHERING

Weathering is the adverse response of a material or product to climate, often causing unwanted and premature failures.

We attempt to prevent deterioration and premature product failure through chemical or mechanical stabilization and through **weathering tests** to access a material durability.


Temperature dependency on color

Solar radiation vs UV in different areas

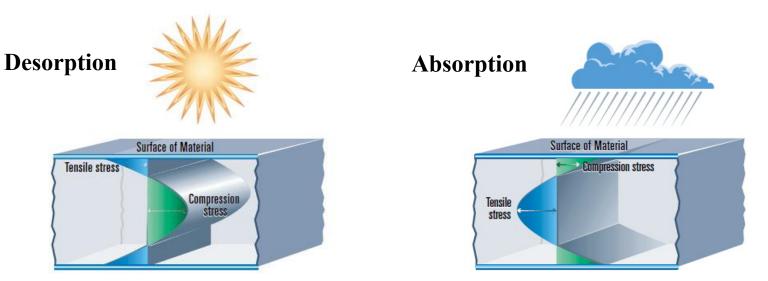
WEATHERING / EFFECT OF UV

UV radiation

characterized by short wavelengths is the cause of photo-degradation results in breakdown the polymer chain.

Light beam of Xenon lamp,

having wavelength between 340 nm to 400 nm is referred in many standards such as ASTM, HD, UL, as UV test.


UV range of Solar radiation

WEATHERING / EFFECT OF MOISTURE

There are two ways in which water affects materials :

Water absorption (from humidity and direct wetness). When surface absorbs moisture a volume expansion is produced that places stress on the dry subsurface layers.

Water desorption, will occur during drying out period (against sunlight or) the surface layers will lead to volume contraction). The hydrated inner layers resist this contraction, leading to **surface stress cracking**.

WEATHER RESISTANT TEST OF INSULATION

Test Method of HD 626 S1:1996/A2:2002 Part 2, Section 2.5.1

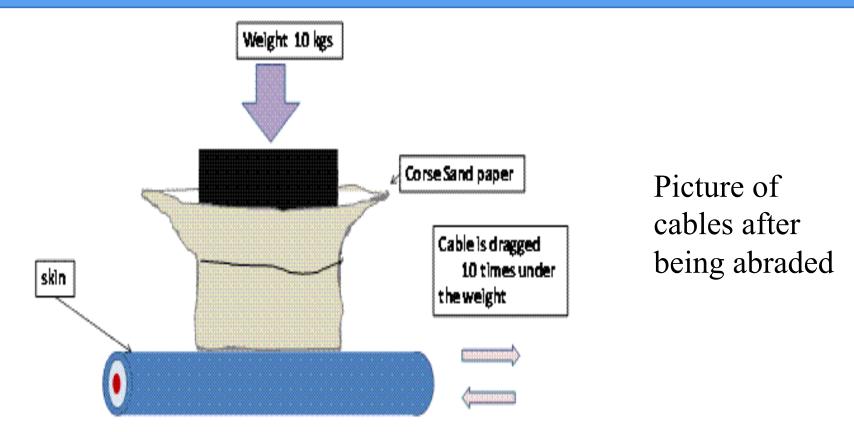
Test Condition : Under light beam of **Xenon-lamp** (at max temp 70 +/- 2'C), Plus water spray Following weekly condition to be repeated 3 times (for 1st and 2nd batch of samples) Cabinet temperature θ_E (°C) And 3 times more for 2nd batch of samples Wednesday Wednesday Wednesday Thursday Thursday Friday Friday Monday Tuesday 11 am 4.30 pm 10 am 3.30 pm 9 am 9 am 9 am 10 am 9 am 23 h 23 h 46 h h1h 70 h 1 h Smart Damper™ System А В С D Blower 70-Uniform Chamber 55-Airflow Ceilina **Rack Spray** 23 RH = 30 % RH = 95 % **Specimen Spray** RH = 60 % RH = 30 % Sprinkling sprinkling sprinkling Xenon Lamp Light Monitor U.V. Elapsed -25 time (h) 72 96 120 149.5 126,5 144 168

WEATHER RESISTANT TEST EVALUATIONS

HD 626-2 section 2.5.1 test is done is 3 different conditions :

- 1- Whole Black insulation
- 2- Black Skin / Core insulation (un-scratched)
- 3- Black Skin / Core insulation (scratched)

Evaluation of results (Tensile strength (R) and Elongation at Break changes (A)):


1)
$$\left| \frac{A_2 - A_0}{A_0} \right| \times 100 \le 30$$
 $\left| \frac{R_2 - R_0}{R_0} \right| \times 100 \le 30$ Reference batch : A0, R0
1st batch : A1, R1

A2, R2

2)
$$\left| \frac{A_2 - A_1}{A_0} \right| \times 100 \le 15$$
 $\left| \frac{R_2 - R_1}{R_0} \right| \times 100 \le 15$ $2^{\text{nd}} \text{ batch :}$

Test Duration : 1st batch after 3 weeks (about 500h) and 2nd Batch after another 3 weeks exposure (about 1000h)

TEST FOR ABRASION RESISTANCE

To simulate cable being dragged on the floor

WEATHER RESISTANT TEST RESULTS

	/ 1	Black Non Sc		
	A0	445	R0	15.5
	A1	400	R1	14
	A2	360	R2	12.8
First	19	%	17	°⁄0
		/0	1,	/0
Second	9	%	89	0⁄0

All 3 samples passed above tests (specially scratched one)

< 15

ANOTHER EXAMPLE

A SKIN Cable made in KENYA has been tested in **Peru for UV protection**

Test Standard : ASTM S5208

Test Duration : 3600 hours

Test Condition : 21'C, 65% HR

INF.TEC. Nº 202A/08/2013 Pág. 1/1 12/12/2013 Solicita ANDINA PLAST SA Atención Ing, Vilma Surco. Domicilio C/Isidro Bonifaz Nº 415-433 Urb. Pan. Norte, Lima 28-Perú. Teléfono 533-7225/533-7226 533-3734/ 533-3392 /533-33393 20106876321 Referencia Solicitud de servicio de fecha 02/07/2013 y Cot. 26/06/13 Guía de Remisión 004-N°0001983 Muestra Cables eléctricos con cubierta color negro. Pruebas Exposición a radiación UV (3600 horas)

Condiciones: 21°C, 65% HR

Características:

Fecha

Fax

RUC

Muestra: Muestra de cables eléctricos de cobre con recubrimiento color negro. 05 probetas de 20cm c/u.

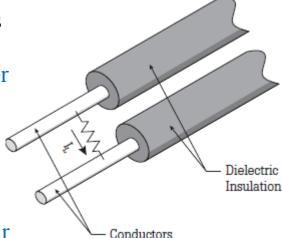
Resultados:

Prueba	Referencia	Muestra	Observaciones
		Después de exposición	Mantiene
Radiación UV	ASTM D5208	durante 3600 horas	el color y apariencia

Responsable del servicio:

PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU Centro de Consultoria y Servicros Integrados - INNOVA PUCP Laboratorio de Analisis Fisicas

Dra. MARIA ELENA LOPEZ HERRERA



INSULATION RESISTANCE

We have applied 500 V D.C for Megger test in following conditions

A) Cores in Water – Voltage applied between Conductor and water

Black Skin / Natural Core $R > 20 \ge 10^{6}$ MOhms.KMWhole Black Core $R > 13 \ge 10^{6}$ MOhms.KM

B) Bunched cable – Voltage applied between Conductors in the air

Black Skin / Natural Core R > 13 x 10⁶ MOhms.KM

Whole Black Core $R > 9 \ge 10^{6}$ MOhms.KM

• Conclusion :

Insulation resistance in Black Skin / Natural Core is about 50 % more than Whole Black core . Meaning higher Dielectric Strength and more Cable life cycle.

CONCLUSION

We believe that in using a **fortified skin** layer, a cable company will not only save money but also allows for the production of a cable that has superior mechanical, thermal and electrical properties, without comprising on production speeds and surface finishes.

